AD-767 977

LIMITING DISTRIBUTIONS IN A LINEAR FRACTIONAL FLOW MODEL

Richard C. Grinold, et al

California University

Prepared for:

Office of Naval Research

September 1973

DISTRIBUTED BY:

5285 Port Royal Road, Springfield Va. 22151

LIMITING DISTRIBUTIONS IN A LINEAR FRACTIONAL FLOW MODEL

By

RICHARD C. GRINOLD

and

ROBERT E. STANFORD

AD 767977

OPERATIONS RESEARCH CENTER

COLLEGE OF ENGINEERING

UNIVERSITY OF CALIFORNIA . BERKELEY

Approved the public release;

LIMITING DISTRIBUTIONS IN A LINEAR FRACTIONAL FLOW MODEL

by

Richard C. Grinold University of California, Berkeley

and

Robert E. Stanford California State University Hayward, California

SEPTEMBER 1973 ORC 73-16

This research has been supported by the Office of Naval Research under Contract N00014-69-A-0200-1055 with the University of California. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Unclassified				li	
Security Classification					
	ONTROL DATA - R & D				
(Security classification of title, body of abstruct and inde					
I ORIGINATING ACTIVITY (Corporate author)	20.	28. REPORT SECURITY CLASSIFICATION			
University of California, Berkeley	36	Unclassified			
	20.	CHOOP			
3 REPORT TITLE					
LIMITING DISTRIBUTIONS IN A LINEAR FRAC	TIONAL FLOW MODEL				
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)					
Research Report					
5 AUTHOR(S) (First name, middle initial, last name)					
Dishard C. Codesld and Daham P. Charle	1				
Richard C. Grinold and Robert E. Stanf	ord				
6. REPORT DATE	78. TOTAL NO. OF PA	GES	76. NO. OF REFS		
September 1973	22 37		7		
NOON A CO. A CO.O. LOSS	94. ORIGINATOR'S RE	PORT NUMI	BEA(2)		
N00014-69-A-0200-1055	OF	ORC 73-16			
NR 047 120					
6.	Sh. OTHER REPORT N	O(S) (Any o	ther numbers that may be ess	lened	
"	this report)	- (J.	Halloors that aley of cos	, g	
d.					
10. DISTRIBUTION STATEMENT					
This document has been entroved for an	blda malasas sud a	1 44			
This document has been approved for pull unlimited.	ofic release and s	are; it	is distribution is		
dilluited.					
II. SUPPLEMENTARY NOTES		12. SPONSORING MILITARY ACTIVITY			
None	_	Department of the Navy			
	Office of Naval Research		Arlington, Virginia 22217		
13. ABSTRACT	Attington, v	Arrington, virginia 2221/			
IS. ADSTRACT					
SEE ABSTRACT.					
obb Abolicaci.					

4-31/00

Unclassified
Security Classification

KEY WORDS	LIN	LINKA		LINKS		LINK	
	ROLE	wT	ROLE	wt	ROLE	₩.	
Markov Chains							
Linear Control							
Equilibrium Results							
Fixed Points		•					
Manpower Flow							
power 120w							
	ļ						
				}			
	Ι '						
		, [
				1			
		11					
		11					
	Į.						
				i			
		Ξ					

ABSTRACT

We examine a linear fractional flow model which can be interpreted as a Markov chain with partially controlled transition probabilities. The paper classifies the set L of limiting distributions and details several of its properties. A precise classification in a three dimensional case is presented.

1. INTRODUCTION

This paper identifies the set of limiting solutions for the $\, n \,$ dimensional constrained linear system

$$x(t + 1) = x(t)P + u(t),$$
(1)
$$x(t)e = 1, u(t) \ge 0 t = 0,1,2, ...$$

where e is a column vector with each of its n elements equal to one. The initial vector $\mathbf{x}(0) \geq 0$ is given, and the n × n matrix P is nonnegative. In general, we assume $\mathbf{w} = (\mathbf{I} - \mathbf{P})\mathbf{e} \geq 0$ and that $(\mathbf{I} - \mathbf{P})$ has an inverse. Our principal result, however, requires slightly stronger assumption. It follows that $\mathbf{x}(t)$ is always a nonnegative vector with components summing to one; i.e., $\mathbf{x}(t)$ is the distribution of some quantity at time t. Equation (1) shows how that distribution can change over discrete time.

Bartholomew, [1] and [2], has derived an equivalent expression of the dynamics (1) in which x(t) is the distribution of a partially controllable Markov process. The equivalence is based on the identity x(t)w = u(t)e, which holds if x(t) and u(t) solve (1). For any solution of (1) we define z(t) and Q[z(t)] by

(2)
$$z(t) = \begin{cases} x(t) & \text{if } u(t) = 0 \\ u(t)/u(t) & \text{otherwise} \end{cases},$$

and

$$Q_{ij}[z(t)] = P_{ij} + w_i z_j(t)$$
,

or in matrix notation

$$Q[z(t)] = P + wz(t) .$$

Since w is a column vector, wz(t) is an n × n matrix.

Note that $z(t) \ge 0$, z(t)e = 1, and that $Q_{ij}[z(t)]$ is a stochastic matrix. It follows that

(3)
$$x(t + 1) = x(t)Q[z(t)]$$
.

Now, in contrast, suppose z(t) is any sequence with $z(t) \ge 0$, z(t)e = 1. Given x(0), we define Q[z(t)] and x(t) by (2) and (3). It is apparent that u(t) = [x(t)w]z(t) and x(t) will solve (1).

This paper characterizes the set L of limiting distributions. We can say, roughly, that for any x(t) and u(t) satisfying (1), x(t) converges geometrically to L. The set L has two other interesting properties. First, let a closed set A be defined as a trapping set if $x(0) \in A \Rightarrow x(1) \in A$. We find that L is the smallest trapping set. Second, if $x(0) \not\in L$, then it is not possible to return to x(0); in contrast, if x(0) is in the relative interior of L, it is possible to return to x(0) in a finite number of periods.

Section 2 motivates system (1) in the context of a manpower planning problem. Section 3 is devoted to definitions, a statement of the theorem, and a discussion of the result. In Section 4 we examine a special case with n=3, and obtain a precise characterization of the set L. Proofs are included in Section 5.

This paper extends and strengthens several results of Toole [7]. Specific references to Toole's work is included as it appears. For completeness we have included short proofs of several of Toole's results.

2. MOTIVATION-MANPOWER FLOW

Consider an organization with n job classifications called ranks. Let $\text{M}_{ij} \text{ be the fraction of workers in rank i that move to rank j in one period and let } v_j(t) \geq 0 \text{ be the number of workers hired into rank j in period } t \text{ .}$ Finally let $v_j(t)$ be the number in rank j at time t . It follows that

(4)
$$y_{j}(t+1) = \sum_{i=1}^{n} y_{i}(t)M_{ij} + v_{j}(t)$$
,

or in matrix notation y(t + 1) = y(t)M + v(t).

The initial inventory of manpower is given by $y(0) \ge 0$. Assume the organization is growing constantly at rate $(\theta-1)$; thus the size at time t is $\theta^t y(0)e$. Let x(t) be defined as $x(t) = y(t)/\theta^t y(0)e$, and define $u(t) = v(t)/\theta^{t+1}y(0)e$. Then x(t) and u(t) obey Equation (1) of Section 1 with $P = M/\theta$.

As a second manpower example consider an organization with n-1 ranks. Define y, v, and M_{ij} as above. We add rank n to the organization to consist of unfilled positions, and let $y_n(t)$ denote the number of unfilled positions at time t. Define $v_n(t)$ as the number of positions open during t which remain open in the next period, set $M_{ni} = 0$ for $i = 1, 2, \ldots, n$ and $M_{in} = 1 - \sum_{j=1}^{n-1} M_{ij}$ for $i = 1, 2, \ldots, n-1$. With these definitions Equation (4) holds for our second manpower system.

3. DEFINITIONS AND MAIN RESULT

We define the norm of a vector $x \in \mathbb{R}^n$ to be $||x|| = \sum_{j=1}^n |x_j|$. The closure, relative interior, and convex hull of sets are denoted cl, ri, and C respectively. We let ϕ denote the empty set. The simplex $S = \{x \mid xe = 1, x \geq 0\}$ is the set of possible distributions and we topologize the closed subsets of the metric space $(S, || \cdot ||)$ with the Hausdorf metric, [3]:

$$\delta(A,D) = \text{Max Min } ||x - y||$$
 $x \in A \ y \in D$

(5)
$$d(A,D) = Max [\delta(A,D),\delta(D,A)].$$

Let $E = \{x \mid x \in S, x \geq xP\}$ be defined as the set of equilibrium distributions; then the solution x(t) = x for all t is feasible for (1) if and only if $x \in E$. Now choose any $z \in S$ and consider the stochastic matrix Q(z) = P + wz where $w = (I - P)e \geq 0$. When (I - P) has an inverse N, Toole [7] has demonstrated that x = zN/zNe is the unique $x \in S$ such that x = xQ(z). It follows that $x \in E$ if and only if x is a stationary vector of some stochastic matrix Q(z) for $z \in S$.

Suppose x = xQ(z), $x \in S$. It does not follow that for any x(0), with u(t) = (x(t)w)z, we have $x(t) \to x$. Consider P and z below.

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & 0 & 0 \end{bmatrix} \qquad z = (1,0,0)$$

(6)
$$Q[z] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \Rightarrow x = (1/3, 1/3, 1/3)$$

However if $x(0) = (\alpha, \beta, \gamma)$, then $x(1) = (\gamma, \alpha, \beta)$, $x(2) = (\beta, \gamma, \alpha)$, $x(3) = (\alpha, \beta, \gamma)$. When z is strictly positive, the Markov matrix Q(z) is regular and we then have $x(t) \rightarrow x$ for any initial x(0).

Let A be any nonempty subset of S and R(A) $\stackrel{\triangle}{=}$ {x | x \in S,x \geq yP,y \in A}.

When A is a singleton, $\{x\}$, we use the notation R(x). For $A \neq \emptyset$, define $R^0(A) = A$, $R^1(A) = R(A)$, and for $t \ge 1$, $R^{t+1}(A) = R(R^t(A))$. For any $x \in S$, $R^t(x)$ is the set of x(t) feasible in (1) given that x(0) = x.

It is easy to verify that if A is closed, convex, or polyhedral then R(A) will have the same property. Moreover, $A \subseteq B \Rightarrow R(A) \subseteq R(B)$, and CR(A) = R(CA), and CR(A) = R(CA). We also can see that for any t, $E \subseteq R^t(E) \subseteq R^t(S) \subseteq S$. Therefore we define the limiting set L as $L = \bigcap_{t=0}^{\infty} R^t(S)$. Note that L is nonempty, closed and convex. Toole [7] has demonstrated

Proposition 1:

$$R(L) = L$$
.

Proof:

 $y \in R(L) \Rightarrow y \in S$ and $y \ge xP$ for some $x \in L \subseteq R^t(S)$ for all $t \ge 0$. Thus $y \in R^{t+1}(S)$ for all $t \ge 0 \Rightarrow y \in L$. Conversely if $x \in L$, then $x \in S$, and since $x \in R^t(S)$ for all $t \ge 1$, there exists a $y(t) \in R^{t-1}(S)$ such that $x \ge y(t)P$. Let y be an accumulation point of the y(t). It follows that $y \in L$, thus $x \ge yP \Rightarrow x \in R(L)$.

Proposition 2: (Stanford [6], Toole [7])

If (I - P) has an inverse then

- (i) int $E \neq \phi$.
- (ii) For any x(0), and $y \in int E$, there exists a finite T such that $y \in R^{t}(x(0))$ for t > T.

Proof:

We have $(I - P)^{-1} \ge 0$. If b > 0, then $y = b(I - P)^{-1} > 0$, and x = y/ye satisfies $x \in S$, x > xP.

With x defined as above, we have $z = \frac{x(I - P)}{xw}$, a strictly positive

appointment vector. Therefore $\mathbf{x}(0)\mathbf{Q}^{\mathbf{t}}(z) + \mathbf{x} \in \mathbf{ri} \ \mathbf{E}$. There exists an ϵ neighborhood $\mathbf{N}_{\epsilon}(\mathbf{x})$ of \mathbf{x} such that for any $\mathbf{y} \in \mathbf{N}_{\epsilon}(\mathbf{x})$ we have $\mathbf{x} \in \mathbf{R}(\mathbf{y})$, or $\mathbf{y} \geq \mathbf{xP}$. There is a finite \mathbf{T} such that $\mathbf{x}(0)\mathbf{Q}^{\mathbf{T}-\mathbf{1}}(\mathbf{z}) \in \mathbf{N}_{\epsilon}(\mathbf{x})$. Thus $\mathbf{x} \in \mathbf{R}^{\mathbf{T}}(\mathbf{x}(0))$, and since $\mathbf{x} \in \mathbf{E}$, we have $\mathbf{x} \in \mathbf{R}^{\mathbf{t}}(\mathbf{x}(0))$ for all $\mathbf{t} \geq \mathbf{T}$.

For $k \ge 1$, define the k^{th} cycle set as $C^k = \{x \mid x \in R^k(x)\}$. If $x \in C^k$, then it is possible to return to x in k steps; note that $C^1 = E$. Define $C^\infty = \bigcup_{k=1}^\infty C^k$; if $x \in C^\infty$, there is some finite k such that it is possible to return to x in k steps.

Proposition 3: (Toole [7])

$$c1 C^{\infty} = c1 \begin{bmatrix} \infty \\ \cup \\ t=1 \end{bmatrix} R^{t}(E) \subseteq L$$

Our theorem strengthens this result considerably.

Theorem 1:

If
$$w = (I - P)e > 0$$
, then

- (i) L is the unique closed nonempty subset of S satisfying R(L) = L.
- (ii) For any closed nonempty subset A of S,

$$d(R^{t}(A),L) \leq \sigma^{t}d(A,L)$$

where $0 \le \sigma < 1$.

(iii)
$$cl C^{\infty} = L$$

(iv) If $\phi \neq A \subseteq S$, then R(A) = A implies cl A = L.

The proof will be presented in Section 5. It depends in large part on the following lemma:

Lemma:

Let $\sigma = [1 - 1/2 \text{ Min } \{w_i \mid i = 1, 2, ..., n\}] < 1$. For any x , y , z \in S ,

$$||(x-y)Q(z)|| < \sigma ||x-y||.$$

We suspect that a weaker version of the theorem is valid under the weaker hypothesis that (I - P) is nonsingular. However, the lemma does not generalize with that hypothesis. Recall example (6). Let z = (1,0,0), y = (0,1,0) and x = (0,0,1). We have

	xQ ^t (z)	yQ ^t (z)	$ (x - y)Q^{t}(z) $
t = 0	(0,0,1)	(0,1,0)	2
t = 1	(1,0,0)	(0,0,1)	2
t = 2	(0,1,0)	(1,0,0)	2
t = 3	(0,0,1)	(0,1,0)	2
•	•	•	•
•	•	•	•
•	•	•	•

This example has

$$||(x - y)Q^{t}(z)|| = ||x - y||$$
 for all t.

Before concluding this section we shall discuss several implications of the theorem. First $R^{t}(\Lambda) \to L$ for any nonempty subset A of S. For any A we have $R^{t}(S) \supseteq R^{t}(A)$. In addition, there exists a finite T and x ε rie such that $x \in R^{T}(\Lambda)$ thus $R^{t}(A) \supseteq R^{t-T}(x)$ for all $t \ge T$. The sequences $R^{t}(S)$ and $R^{t-T}(x)$ are closed and converge geometrically to L. Moreover, the sequence $R^{t}(S)$ is contracting, and the sequence $R^{t-T}(x)$ is expanding.

As a second point, let A be any closed subset such that $R(A)\subseteq A$. To see that $L\subseteq A$, assume $x\in L$ and $x\notin A$. It follows that $x\notin R^{\mathbf{t}}(A)$ for all t, and therefore that

$$d[R^{t}(A),L] \ge d[A,L] \ge \min_{y \in A} ||x - y|| > 0$$
.

However, the term on the left converges geometrically to zero.

We observe if $x \not\in L$, then it is impossible to return to x. If we did return to x in k steps then $x \in C^k \subseteq L$. To show that we can return to any point in ri L in a finite number of steps we must demonstrate that C^∞ is convex. If x and y are in C^∞ then $x \in C^k$ and $y \in C^h$ for finite k and k. This implies that both k and k are in k since k is closed and convex, the line segment joining k and k is k in k since k is closed and convex, the line segment joining k and k is k in k since k is follows Rockafellar [5], page 46 that ri k is k ri k and k is k it is possible to move from k to k in a finite number of steps. This follows since the sequence of closed sets k (y) k in and k in k thus there must exist a finite k such that k in k in contrast, if k is and the initial k in k then it is not possible to move from k to k in a finite number of steps.

The next section presents a precise characterization of L in a special case. Proofs of Theorem (1) and Lemma (1) are presented in Section 5.

4. SPECIAL CASE - A CHARACTERIZATION OF L

This section examines the special case of

$$P = \begin{bmatrix} P_{11} & P_{12} & 0 \\ 0 & P_{22} & P_{23} \\ 0 & 0 & P_{33} \end{bmatrix}$$

where we assume

(i)
$$w_i > 0$$
 i = 1,2,3.

(iii)
$$w_2 \ge w_3$$
.

The example corresponds to a three rank manpower hierarchy; e.g. assistant, associate, and full professors. Assumption (i) means it is possible to leave from any rank, (ii) is satisfied if $p_{ii} \geq 1/2$ for all i and (iii) indicates that withdrawal rates are higher in rank 2 than in rank 3. We shall present some numerical calculations below indicating that the main result of this section is true under more general conditions. The sets S and E are depicted in Figure 1. In this special case it is possible to obtain a precise characterization of the set L.

For k = 1, 2, 3 let Q(k) be the matrix with

$$Q_{ij}(k) = \begin{cases} P_{ik} + w_i & \text{if } j = k \\ & & \\ P_{ij} & \text{if } j \neq k \end{cases}$$

In the manpower context, Q(i) corresponds to making all new appointments in rank i. For k=1, 2, 3 let x^k be the stationary vectors of the Q(k); the x^k are proportional to the rows of $(I-P)^{-1}$ and are the extreme points of E.

Recall that C denotes convex hull. Define

$$F = C(x^3Q^t(1), x^1Q^t(2), x^2Q^t(3))$$
 $t = 0,1,2, ...$

The sequence $x^iQ^t(j)$ simply starts at x^i and follows appointments in rank j only for all t. The points $x^2Q^t(3)$ for $t \ge 1$ all lie on the line segment $[x^2, x^3]$, thus

$$F = C\{x^3Q^t(1), x^1Q^t(2), x^2 = 0,1,2, ...\}$$
.

Theorem 2:

Under the assumptions of this section,

$$L = F$$
.

This theorem and the analysis developed in its proof have two corollaries.

Corollary 1:

For any cycle of length k, at least one element of the cycle lies in E.

Corollary 2:

For any solution of (1) and any $\epsilon > 0$ neighborhood of E we have x(t) ϵ $N_c(E)$ infinitely often.

The result allows us to make an excellent and easily calculated approximation of the set L and to gauge the effect of changing parameters on the set of limiting possibilities. Several cases are depicted below.

In Figure 2, we have $w_3 > w_2$ and Theorem 2 fails. However, in Figure 3, $w_3 > w_2$ and it is obvious that our approximation is valid. Thus it is sufficient but not necessary to have $w_3 \leq w_2$.

Figures 3 and 4 show two alternate P matrices and the effect of a change in the elements of P on both the equilibrium set E and the limiting set L.

5. PROOFS

This section details the proofs of Lemma 1 and Theorems 1 and 2.

Proof of Lemma 4:

For the moment consider $z \in S$ fixed. If x = y, then ||x - y|| = 0, and the Lemma is trivial. If $x \neq y$, let $v_i = x_i - y_i$ for all i and define

$$I^{+} = \{i \mid v_{i} \ge 0\}, I^{-} = \{i \mid v_{i} < 0\}.$$

Note that:

$$\sum_{i=1}^{n} v_{i} = \sum_{T^{+}} v_{i} + \sum_{T^{-}} v_{i} = 0$$

and

$$||\mathbf{v}|| = \sum_{\mathbf{T}^+} \mathbf{v_i} - \sum_{\mathbf{T}^-} \mathbf{v_i}$$

therefore

$$||\mathbf{v}|| = 2 \sum_{\mathbf{I}^+} \mathbf{v_i} = -2 \sum_{\mathbf{I}^-} \mathbf{v_i}$$
.

For each j let $u_j = \sum_{i=1}^n v_i Q_{ij}(z)$ and let $J^+ = \{j \mid u_j \ge 0\}$, $J^- = \{j \mid u_j < 0\}$. Using the same logic as above,

$$||u|| = 2 \sum_{j} u_{j} = -2 \sum_{j} u_{j}$$
.

In the first case,

$$||\mathbf{u}|| = 2 \sum_{\mathbf{j}^+} \mathbf{u}_{\mathbf{j}} = 2 \sum_{\mathbf{j}^+} \begin{pmatrix} \sum_{i=1}^n \mathbf{v}_{i} Q_{ij}(z) \end{pmatrix}$$

$$= 2 \sum_{i=1}^{n} v_{i} \sum_{j+1}^{n} Q_{ij}(z) = 2 \sum_{i=1}^{n} v_{i}r_{i}(z),$$

where

$$r_i(z) \stackrel{\Delta}{=} \sum_{j+1} Q_{ij}(z)$$
.

Hence

$$||u|| = 2\left(\sum_{i} v_{i}r_{i}(z) + \sum_{i} v_{i}r_{i}(z)\right) \le 2\sum_{i} v_{i}r_{i}(z).$$

If $h^+(z) \stackrel{\triangle}{=} \max_{i \in I^+} [r_i(z)]$,

$$||u|| \le \left(2 \sum_{i} v_{i}\right) h^{+}(z) = h^{+}(z)||v||.$$

In a similar fashion, if

$$s_{i}(z) \stackrel{\Delta}{=} \sum_{i} Q_{ij}(z)$$
 and $h(z) \stackrel{\Delta}{=} \max_{i \in I} [s_{i}(z)]$,

then

$$||\mathbf{u}|| = -2 \sum_{\mathbf{J}} \mathbf{u}_{\mathbf{j}} = -2 \left[\sum_{\mathbf{I}} \mathbf{v}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}}(\mathbf{z}) + \sum_{\mathbf{I}} \mathbf{v}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}}(\mathbf{z}) \right] \leq \left(-2 \sum_{\mathbf{I}} \mathbf{v}_{\mathbf{i}} \right) \mathbf{h}^{-}(\mathbf{z}) .$$

Therefore $||u|| \le h^{-}(z)||v||$.

To summarize in terms of x , y , z ,

$$\left|\left|(x-y)Q(z)\right|\right| \leq \left|\left|x-y\right|\right| \, \text{Min} \left[\underset{I^{+}}{\text{Max}} \left[\underset{J^{+}}{\overset{\textstyle \Gamma}{\sum}} \, Q_{ij}(z) \right] \, , \, \underset{I^{-}}{\text{Max}} \left[\underset{J^{-}}{\overset{\textstyle \Gamma}{\sum}} \, Q_{ij}(z) \right] \right] \, .$$

For each $Q_{ij}(z)$ we have $Q_{ij} \ge w^*z_j$ where $w^* = Min \{w_i \mid i = 1, 2, ..., n\} > 0$. Thus

$$\underset{\mathbf{I}^{+}}{\text{Min}} \left[\sum_{\mathbf{J}^{-}} Q_{\mathbf{i}\mathbf{j}}(\mathbf{z}) \right] \geq w^{*} \sum_{\mathbf{J}^{-}} z_{\mathbf{j}}$$

and

$$\max_{\mathbf{I}^{+}} \left[\sum_{\mathbf{J}^{+}}^{\mathbf{Q}} \mathbf{Q}_{\mathbf{i}\mathbf{j}}(\mathbf{z}) \right] \leq 1 - \mathbf{w}^{+} \sum_{\mathbf{J}^{-}}^{\mathbf{Z}} \mathbf{z}_{\mathbf{j}}.$$

Similarly

$$\max_{\mathbf{I}^{-}} \left[\sum_{\mathbf{J}^{-}} Q_{\mathbf{i}\mathbf{j}}(z) \right] \leq 1 - w^{*} \sum_{\mathbf{J}^{+}} z_{\mathbf{j}}.$$

It follows, that for all $z \in S$,

$$\min \left[\max_{\mathbf{I}^{+}} \left[\sum_{\mathbf{J}^{+}} Q_{\mathbf{i},\mathbf{j}}(z) \right], \max_{\mathbf{I}^{-}} \left[\sum_{\mathbf{J}^{-}} Q_{\mathbf{i},\mathbf{j}}(z) \right] \right] \leq 1 - \frac{\mathbf{w}^{*}}{2} < 1.$$

Thus
$$\left| \left| (x - y)Q(z) \right| \right| \le \left(1 - \frac{w^*}{2} \right) \left| \left| x - y \right| \right| \blacksquare$$

Proof of Theorem (1):

First assume

(8)
$$d[R(A),R(D)] \leq \sigma d(A,D)$$

for all closed nonempty sets A and D. It follows immediately that L is the unique fixed point of R, and with D = L in (8), we obtain for each t > 1

$$d[R^{t}(\Lambda),L] < \sigma^{t}d[A,L]$$
.

From Toole [7] we have $R^{\mathbf{t}}(E) \subseteq \operatorname{cl} C^{\infty}$ for all \mathbf{t} , and $C^{\infty} \subseteq L$. Since $R^{\mathbf{t}}(E)$ is an expanding sequence of closed sets converging to L, we must have $L = \operatorname{cl} C^{\infty}$. Finally, for any nonempty A with R(A) = A we have $\operatorname{cl} R(A) = R(\operatorname{cl} A) = \operatorname{cl} A$, which implies $\operatorname{cl} A = L$.

The proof is concluded by verifying Equation (8).

Let h(u) = Min ||u - v||. Then $\delta[R(A), R(D)] = Max h(u)$. Let $u^*v \in R(D)$ $u \in R(A)$

in R(A) be such that

$$h(u^*) = \delta[R(A), R(D)] = \min_{v \in R(D)} ||u^* - v||.$$

Note that

$$\delta[R(A),R(D)] = \delta[\{u^{\star}\},R(D)].$$

There exist some x in A and z ϵ S such that $u^* = xQ(z)$. Now choose $y \epsilon D$ so that $||x - y|| = Min||x - y|| = \delta[\{x\}, D]$. Therefore $yQ(z) \epsilon R(D)$ $u\epsilon D$

and

$$\delta[R(A),R(D)] = \min_{\mathbf{v} \in R(D)} ||\mathbf{u}^{\dagger} - \mathbf{v}|| \leq ||(\mathbf{x} - \mathbf{y})Q(\mathbf{z})||.$$

From Lemma (1),

$$\delta[R(A),R(D)] \leq \sigma ||x-y|| = \sigma \delta[\{x\},D].$$

Also

$$\delta[\{x\},D] \leq \max_{u \in A} \delta[\{u\},D] = \delta[A,D].$$

We have shown that

$$\delta[R(A),R(D)] \leq \sigma\delta[A,D]$$
.

It follows in a similar way that

$$\delta[R(D),R(A)] \leq \sigma\delta[D,A]$$
.

Therefore

$$d[R(\Lambda),R(D)] \leq \sigma d(\Lambda,D)$$
.

Proof of Theorem (2):

Since F is nonempty and closed, it suffices by Theorem 1, to prove that R(F) = F.

If $A \subseteq S$ is polyhedral with extreme points u^{ℓ} , $\ell = 1, 2, \ldots$, we may represent R(A) as

$$C\{u^{\ell}Q(k) \text{ for } \ell=1,2,\ldots, k=1,2,3\}$$
.

Therefore

$$R(F) = C(x^{i}Q^{n}((i + 1) \mod 3)Q(j), i = 1,2,3, j = 1,2,3, n = 0,1,2,...)$$

It is clear that $R(F) \supseteq F$. In demonstrating $R(F) \subseteq F$, our attendant arguments will be sketchy—we shall omit a large amount of tedious algebra.

Let

$$V^2 = \{y : y \in S, y_2 < (yP)_2\}$$

and

$$v^3 = \{y : y \in S, y_3 < (yP)_3\}$$
.

With the aid of Figure 5, we see that if $x^3Q^t(1) \in V^2 - V^3$, we must have

$$x^{3}Q^{t}(1)Q(3) \in C\{x^{3}, x^{1}Q(3), x^{3}Q^{t+1}(1)\}$$

and

$$x^{3}Q^{t}(1)Q(2) \in C\{x^{3}Q(2), x^{1}Q(2), x^{3}Q^{t+1}(1)\}$$
.

Similarly, if $x^{1}Q^{t}(2)$ is in $V^{3} - V^{2}$, then

$$x^{1}0^{t}(2)0(3) \in C\{x^{2}0(3), x^{1}0(3), x^{1}0^{t+1}(2)\}$$

and

$$x^{1}Q^{t}(2)Q(1) \in C\{x^{2}Q(1), x^{1}, x^{1}Q^{t+1}(2)\}$$
.

Also, it is clear that

$$x^{2}Q^{t}(3)Q(1) \in C(x^{3}Q(1), x^{2}Q(1))$$

and

$$x^{2}Q^{t}(3)Q(2) \in C\{x^{3}, x^{2}\}$$
.

Now it follows from the condition $p_{22} \ge p_{12}$ that $x^2Q(1) \in F$, and it is easy to show that we always have $x^1Q(3) \in F$. Hence we have established that each point of R(F) is in F, provided that the sequences $\{x^3Q^t(1)\}$ and $\{x^1Q^t(2)\}$ remain in the sets V^2-V^3 and V^3-V^2 respectively.

The condition $p_{22} \ge p_{12}$ guarantees that if $x^1Q^t(2) \in V^3 - V^2$, then

(2)
$$x^1 q^{t+1}(2) \in C\{x^1 q^t(2), x^2, (0,1,0)\} \subset v^3 - v^2$$
.

With the requirements $p_{22} \ge p_{12}$ and $w_2 \ge w_3$, we have that $x^3 Q^t(1) \in V^2 - V^3$ implies

(3)
$$x^{3}Q^{t+1}(1) \in C\{x^{3}Q^{t}(1), x^{1}, (1,0,0)\} \subset V^{2} - V^{3}$$
,

and the proof is complete.

REFERENCES

- [1] Bartholomew, D., "A Mathematical Analysis of Structural Control in a Graded Manpower System," Report 69-12, Office of the Vice-President for Planning and Analysis, University of California, Eerkeley, (1969).
- [2] Bartholomew, D., STOCHASTIC MODELS FOR SOCIAL PROCESSES, John Wiley, London, (1967).
- [3] Berge, C., TOPOLOGICAL SPACES, Macmillan, New York, (1963).
- [4] Kemeny, J. G. and J. L. Snell, FINITE MARKOV CHAINS, VanNostrand, Princeton, (1960).
- [5] Rockafellar, T. R., CONVEX ANALYSIS, Princeton, (1970).
- [6] Stanford, R. E., "Optimal Control of a Graded Manpower System," Report ORC 71-20, Operations Research Center, University of California, Berkeley, (1971).
- [7] Toole, P. J., "An Appointment, Promotion, and Retirement Model, for a Graded Manpower System of Total Fixed Size," Report ORC 71-21, Operations Research Center, University of California, Berkeley, (1971).